Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Virol J ; 19(1): 197, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: covidwho-2139346

RESUMEN

Currently, the majority of the global population has been vaccinated with the COVID-19 vaccine, and characterization studies of antibodies in vivo from Omicron breakthrough infection and naive infection populations are urgently needed to provide pivotal clues about accurate diagnosis, treatment, and next-generation vaccine design against SARS-CoV-2 infection. We showed that after infection with Omicron-BA.2, the antibody levels of specific IgM against the Wuhan strain and specific IgG against Omicron were not significantly elevated within 27 days of onset. Interestingly, in this study, the levels of humoral immunity against Omicron-specific IgM were significantly increased after breakthrough infection, suggesting that the detection of Omicron-specific IgM antibodies can be used as a test criterion of Omicron breakthrough infection. In addition, we observed that serums from unvaccinated individuals and the majority of vaccinated infections possessed only low or no neutralizing activity against Omicron at the onset of Omicron breakthrough infections, and at the later stage of Omicron-BA.2 breakthrough infection, levels of neutralization antibody against the Wuhan and Omicron strains were elevated in infected individuals. The findings of this study provide important clues for the diagnosis of Omicron breakthrough infections, antibody characterization studies and vaccine design against COVID-19.


Asunto(s)
Formación de Anticuerpos , COVID-19 , Humanos , SARS-CoV-2 , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Inmunoglobulina M
2.
J Med Virol ; 94(12): 6065-6072, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1976738

RESUMEN

Various variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been emerging and circulating in different parts of the world. Millions of vaccine doses have been administered globally, which reduces the morbidity and mortality of coronavirus disease-2019 efficiently. Here, we assess the immune responses of individuals after two shots of BBIBP-CorV or CoronaVac inactivated vaccine. We measured neutralizing antibody responses after the second vaccination by using authentic SARS-CoV-2 and its viral variants. All the serum samples efficiently neutralized SARS-CoV-2 wild-type lineage, in contrast, a part of serum samples failed to neutralize Alpha, Beta, Gamma, Delta, or Eta lineages, and only several serum samples were able to neutralize Omicron lineage virus strains (BA.1 and BA.2) with low neutralization titer. As compared with the neutralization of SARS-CoV-2 wild-type lineage, the neutralization of all other SARS-CoV-2 variant lineages was significantly lower. Considering that all the SARS-CoV-2 mutation viruses challenged the antibody neutralization induced by BBIBP-CorV and CoronaVac, it is necessary to carry out a third booster vaccination to increase the humoral immune response against the SARS-CoV-2 mutation viruses.


Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2/genética , Vacunas de Productos Inactivados
3.
J Med Virol ; 94(9): 4533-4538, 2022 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1885414

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants could induce immune escape by mutations of the spike protein which are threatening to weaken vaccine efficacy. A booster vaccination is expected to increase the humoral immune response against SARS-CoV-2 variants in the population. We showed that immunization with two doses of wild type receptor-binding domain (RBD) protein, and booster vaccination with wild type or variant RBD protein all significantly increased binding and neutralizing antibody titers against wild type SARS-CoV-2 and its variants in mice. Only the booster immunization by Omicron (BA.1)RBD induced a strong antibody titer against the omicron virus strain and comparable antibody titers against all the other virus strains. These findings might shed the light on coronavirus disease 2019 booster immunogens.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Inmunidad Humoral , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Humanos , Inmunización Secundaria , Ratones , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunación
4.
Nat Commun ; 13(1): 460, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1651070

RESUMEN

The SARS-CoV-2 Delta variant has spread rapidly worldwide. To provide data on its virological profile, we here report the first local transmission of Delta in mainland China. All 167 infections could be traced back to the first index case. Daily sequential PCR testing of quarantined individuals indicated that the viral loads of Delta infections, when they first become PCR-positive, were on average ~1000 times greater compared to lineage A/B infections during the first epidemic wave in China in early 2020, suggesting potentially faster viral replication and greater infectiousness of Delta during early infection. The estimated transmission bottleneck size of the Delta variant was generally narrow, with 1-3 virions in 29 donor-recipient transmission pairs. However, the transmission of minor iSNVs resulted in at least 3 of the 34 substitutions that were identified in the outbreak, highlighting the contribution of intra-host variants to population-level viral diversity during rapid spread.


Asunto(s)
COVID-19/transmisión , Trazado de Contacto/métodos , Brotes de Enfermedades/prevención & control , SARS-CoV-2/aislamiento & purificación , Animales , COVID-19/epidemiología , COVID-19/virología , Chlorocebus aethiops , Humanos , RNA-Seq/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Factores de Tiempo , Células Vero , Carga Viral/genética , Carga Viral/fisiología , Replicación Viral/genética , Replicación Viral/fisiología , Esparcimiento de Virus/genética , Esparcimiento de Virus/fisiología
7.
Curr Med Sci ; 41(2): 228-235, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: covidwho-1193157

RESUMEN

Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) with unknown origin spread rapidly to 222 countries, areas or territories. To investigate the genomic evolution and variation in the early phase of COVID-19 pandemic in Guangdong, 60 specimens of SARS-CoV-2 were used to perform whole genome sequencing, and genomics, amino acid variation and Spike protein structure modeling analyses. Phylogenetic analysis suggested that the early variation in the SARS-CoV-2 genome was still intra-species, with no evolution to other coronaviruses. There were one to seven nucleotide variations (SNVs) in each genome and all SNVs were distributed in various fragments of the genome. The Spike protein bound with human receptor, an amino acid salt bridge and a potential furin cleavage site were found in the SARS-CoV-2 using molecular modeling. Our study clarified the characteristics of SARS-CoV-2 genomic evolution, variation and Spike protein structure in the early phase of local cases in Guangdong, which provided reference for generating prevention and control strategies and tracing the source of new outbreaks.


Asunto(s)
COVID-19/genética , Evolución Molecular , SARS-CoV-2/crecimiento & desarrollo , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/epidemiología , COVID-19/virología , China/epidemiología , Furina/genética , Genoma Viral/genética , Humanos , Pandemias , Filogenia , Unión Proteica/genética , SARS-CoV-2/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA